If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5j^2+29j-6=0
a = 5; b = 29; c = -6;
Δ = b2-4ac
Δ = 292-4·5·(-6)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-31}{2*5}=\frac{-60}{10} =-6 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+31}{2*5}=\frac{2}{10} =1/5 $
| -2x+3-x+4x=9 | | b+3b=20 | | Y=4,x= | | R+2r=12 | | 64=4(2x+4) | | 8t^2-45t=0 | | a÷3+7=10 | | -14-7j=14 | | 5g+4g=9 | | 12n-9n=9 | | 3x-2/9+x=3x+2/3+5 | | -6-u=-1 | | a/7=1/21 | | -3v-3+7v=4v+4-5 | | 2x²-11x+24=0 | | 3x^2+39x+12=0 | | 5n+5=-10n+20 | | 7q-q=12 | | x^2-2.5=-1.5 | | 25g^2+14g=0 | | 5n+5=-10+20 | | 1/3(3x+9)=60 | | x^2-1.5=-1.5 | | x3-2(x+3)=-8 | | 4x+4+x=3x-6+2 | | 33s^2-50s=0 | | -t-4=8=7t | | 4n^2+5n-9=0 | | 9-2x=35x= | | 2x-1+x/2=1+4x+5 | | -1-1/3w=1 | | j^2-47j=0 |